рыба которая бьет током как называется
masterok
Мастерок.жж.рф
Хочу все знать
В глубинах морей и океанов обитает большое количество удивительных существ, среди которых скат и угорь. Эти создания прославились тем, что для защиты и охоты используют электричество. Однако большинство людей и представить не могут, каким образом живой организм способен выполнять роль мощной батареи.
Кто вырабатывает электричество?
Сразу в качестве интересного факта стоит отметить, что электричество вырабатывают все рыбы, просто 99% видов генерируют очень слабые заряды, не ощутимые при взаимодействии. Морские существа способны вырабатывать электричество благодаря особому устройству мышц, которые вырабатывают и накапливают электричество. Некоторые виды в процессе эволюции научились аккумулировать большие заряды и бить ими противника. Наиболее преуспели в этом занятии скаты, угри, звездочеты, гимнархи, а также отдельный вид сомов.
Как рыбы вырабатывают электричество?
Все виды электрических морских существ вырабатывают электричество во время движения. За счет того, что мышцы постоянно меняют свою форму и взаимодействуют с окружением, они накапливают электричество. При этом, голова и хвост выступают в роли плюса и минуса соответственно. Это помогает удерживать заряд в мышцах, словно в батареи.
Подробнее разберем, что представляют собой мышцы для накапливания зарядов. Они могут отличаться внешне у каждого вида рыбы, но имеют схожую структуру. Мышцы состоят из столбиков, которые, в свою очередь, разбиты на пластины. Для накапливания электричества столбики соединены параллельно, а пластины последовательно. Между ними находится разность потенциалов, из-за чего при движении аккумулируется энергия, происходит накопление заряда.
Как рыбы бьют током?
Удар током осуществляется с помощью импульсов. Рыба целенаправленно бьет ими жертву. Некоторые виды намеренно испускают в жертву примерно 500 импульсов, чтобы окончательно поразить противника. Соответственно, удары являются осознанными и направленными, нельзя получить заряд, просто дотронувшись до рыбы.
В большинстве случаев используют свое “оружие” рыбы только при прямом контакте с жертвой. В определенных ситуациях могут пустить ток на небольших расстояниях, чтобы отогнать более крупного хищника. У вышеперечисленных рыб разность потенциалов, развиваемая на концах электрических органов, может достигать 1200 вольт (электрический угорь), а мощность разряда в импульсе от 1 до 6 киловатт (электрический скат Torpedo nobiliana).
Электрический скат Torpedo nobiliana
Опасны ли электрические рыбы человеку?
Даже слабый заряд при подобных параметрах может серьезно повредить здоровью человека, особенно на глубине. Бывали случаи, когда выброшенные на берег рыбы буквально сбивали людей на землю при контакте, из-за чего срочно требовалось врачебное вмешательство.
Электрический угорь
Электрические угри обитают в Южной Америке, в реках, и охотятся на мелкую рыбу. Взрослые особи вырастают в длину от 1 до 3 метров, но даже они нередко становятся жертвами местных хищников. Из-за этого угри вынуждены использовать электричество не только для охоты, но и для обороны.
Мышцы для накопления энергии, которые также часто называются “электрические органы”, располагаются вдоль позвоночника и составляют примерно 80% от общей массы угря. Заряд постепенно накапливается в специальных пузырчатых складках, после чего в нужный момент распространяется в пространстве, поражая все живое в радиусе. Данным способом рыба парализует жертву, после чего может приниматься за поедание. Чтобы ток ударил существо, оно должно находиться как можно ближе. Но бывали ситуации, когда рыбаки ловили угря на крючок и получали разряд без контакта с ним: ток проходил по леске вверх и бил сразу, как только человек до нее дотрагивался.
Электрический скат
Данный вид существ знаменит не только способностью вырабатывать электричество, но и своей приплюснутой формой, напоминающей небольшое полотенце. Они обитают преимущественно на дне океанов и достигают 180см в длину.
Электрическую энергию скаты накапливают по всему телу за счет сокращения мышц. Даже юные особи способны бить током с напряжением от 8В. Это помогает охотиться и обездвиживать маленькую рыбу.
О свойствах скатов знали еще в Древнем Египте. Местные врачи использовали легкие удары током юных особей в медицинских целях. Считалось, что небольшие разряды помогают человеку избавиться от болезней.
Как угорь и скат вырабатывают электричество
В глубинах морей и океанов обитает большое количество удивительных существ, среди которых скат и угорь. Эти создания прославились тем, что для защиты и охоты используют электричество.
Однако большинство людей и представить не могут, каким образом живой организм способен выполнять роль мощной батареи.
Кто вырабатывает электричество?
Нильский гимнарх Сразу в качестве интересного факта стоит отметить, что электричество вырабатывают все рыбы, просто 99% видов генерируют очень слабые заряды, не ощутимые при взаимодействии. Морские существа способны вырабатывать электричество благодаря особому устройству мышц, которые вырабатывают и накапливают электричество.
Некоторые виды в процессе эволюции научились аккумулировать большие заряды и бить ими противника. Наиболее преуспели в этом занятии скаты, угри, звездочеты, гимнархи, а также отдельный вид сомов.
Как рыбы вырабатывают электричество?
Все виды электрических морских существ вырабатывают электричество во время движения. За счет того, что мышцы постоянно меняют свою форму и взаимодействуют с окружением, они накапливают электричество. При этом, голова и хвост выступают в роли плюса и минуса соответственно. Это помогает удерживать заряд в мышцах, словно в батареи.
Подробнее разберем, что представляют собой мышцы для накапливания зарядов. Они могут отличаться внешне у каждого вида рыбы, но имеют схожую структуру. Мышцы состоят из столбиков, которые, в свою очередь, разбиты на пластины. Для накапливания электричества столбики соединены параллельно, а пластины последовательно. Между ними находится разность потенциалов, из-за чего при движении аккумулируется энергия, происходит накопление заряда.
Как рыбы бьют током?
В большинстве случаев используют свое “оружие” рыбы только при прямом контакте с жертвой. В определенных ситуациях могут пустить ток на небольших расстояниях, чтобы отогнать более крупного хищника. У вышеперечисленных рыб разность потенциалов, развиваемая на концах электрических органов, может достигать 1200 вольт (электрический угорь), а мощность разряда в импульсе от 1 до 6 киловатт (электрический скат Torpedo nobiliana).
Опасны ли электрические рыбы человеку?
Даже слабый заряд при подобных параметрах может серьезно повредитьздоровью человека, особенно на глубине. Бывали случаи, когда выброшенные на берег рыбы буквально сбивали людей на землю при контакте, из-за чего срочно требовалось врачебное вмешательство.
Электрические угри обитают в Южной Америке, в реках, и охотятся на мелкую рыбу. Взрослые особи вырастают в длину от 1 до 3 метров, но даже они нередко становятся жертвами местных хищников. Из-за этого угри вынуждены использовать электричество не только для охоты, но и для обороны.
Мышцы для накопления энергии, которые также часто называются “электрические органы”, располагаются вдоль позвоночника и составляют примерно 80% от общей массы угря. Заряд постепенно накапливается в специальных пузырчатых складках, после чего в нужный момент распространяется в пространстве, поражая все живое в радиусе. Данным способом рыба парализует жертву, после чего может приниматься за поедание. Чтобы ток ударил существо, оно должно находиться как можно ближе. Но бывали ситуации, когда рыбаки ловили угря на крючок и получали разряд без контакта с ним: ток проходил по леске вверх и бил сразу, как только человек до нее дотрагивался.
Данный вид существ знаменит не только способностью вырабатывать электричество, но и своей приплюснутой формой, напоминающей небольшое полотенце. Они обитают преимущественно на дне океанов и достигают 180см в длину. Электрическую энергию скаты накапливают по всему телу за счет сокращения мышц.
Даже юные особи способны бить током с напряжением от 8В. Это помогает охотиться и обездвиживать маленькую рыбу. О свойствах скатов знали еще в Древнем Египте. Местные врачи использовали легкие удары током юных особей в медицинских целях.
Считалось, что небольшие разряды помогают человеку избавиться от болезней.
Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов
Рыба которая бьет током как называется
Рыба, которая бьет током
Электрические рыбы обитают и в морях, и в пресных водоемах. Среди животных нашей планеты самый мощный электрический разряд создает электрический угорь (верхний снимок); своим разрядом он способен парализовать лошадь. Электрический скат (нижний снимок), ‘обняв’ свою жертву плавниками, тоже парализует ее электрическим разрядом
Придя в обычное состояние, клетка избавляется от ионов натрия при помощи механизма, «устройство» которого неизвестно; ученые называют его «натриевым насосом», потому что он словно выкачивает из клетки ионы натрия.
Когда клетка передает сигнал, «насос» перестает действовать. Ионы натрия и калия притягиваются друг к другу, обмениваясь зарядами и нейтрализуя электрический потенциал клетки. Крошечные разряды поднимаются по нервному волокну, отходящему от клетки, возбуждая электрическое поле в окружающей ткани и жидкости. Сигнал, или нервный импульс, перемещается по нервному волокну до тех пор, пока не достигнет точки, где оно разветвляется на отростки, называемые нервными окончаниями. Окончания пронизывают пространство, отделяющее одну нервную клетку от другой. Это пространство между двумя соседними клетками нервной ткани называется синапсом.
Электрические рыбы обитают и в морях, и в пресных водоемах. Среди животных нашей планеты самый мощный электрический разряд создает электрический угорь (верхний снимок); своим разрядом он способен парализовать лошадь. Электрический скат (нижний снимок), ‘обняв’ свою жертву плавниками, тоже парализует ее электрическим разрядом
В какой-то момент нервный импульс, направляющийся к мышце, достигает синапса, на противоположной стороне которого находится клетка мышечного волокна. Эта точка, называемая нервно-мышечным соединением, играет решающую роль в генерировании электричества у рыб. При появлении нервного импульса в нервно-мышечном соединении вокруг нервных окончаний выделяется химическое вещество, называемое ацетилхолином. Просачиваясь от нервной клетки к мышечной, ацетилхолин передает импульс мышечному волокну, деполяризуя его и вызывая тем самым электрический разряд. Предполагается также, что еще одной функцией ацетилхолина является прекращение действия «натриевого насоса» в клетке, что позволяет ионам проникать сквозь оболочку клетки.
Обычно электрический сигнал заставляет мышцу сокращаться, что и проявляется в различных движениях тела животного. Однако некоторые мышцы у рыб потеряли способность сокращаться. Нервные окончания, идущие к этим мышцам, залегают в районе нервно-мышечных соединений очень густо, а волокна мышечных клеток настолько разрастаются, что образуют нечто вроде живого электрода.
В старину скатов использовали для лечения посредством шока. Лекари помещали небольших скатов на головы пациентов, страдающих головными болями и другими недугами; считалось, что скат обладает целебными свойствами.
Воды, в которых живет электрический угорь, бывают бедны кислородом, но угря это не смущает: он научился дышать также и атмосферным кислородом. Многочисленные кровеносные сосуды в его пасти способны усваивать кислород, и угорь захватывает воздух, поднимаясь к поверхности воды.
Электрические угри хорошо привыкают к жизни в неволе, и их часто можно видеть в аквариумах; обычно аквариум оборудуют каким-нибудь электрическим прибором для демонстрации уникальных способностей угря, например лампой, к которой ведут провода от двух опущенных в воду электродов. Когда в аквариум бросают кусочки корма или мелких рыбешек, лампа загорается, потому что, почуяв добычу, угорь начинает генерировать в воде электрические разряды. Аквариум можно оборудовать и звукоусилителями, и тогда посетители услышат статические шумы, сопровождающие разряды тока, генерируемые угрем.
Способность угря генерировать огромные количества электроэнергии уже более столетия привлекает внимание биологов и медиков. Во время второй мировой войны ею заинтересовались я военные, в том числе и американские: через два года после вступления Соединенных Штатов в войну, в Нью-Йорк были доставлены двести электрических угрей, пойманных в Южной Америке. В зоопарке в Бронксе для них устроили двадцать два деревянных бассейна. Угрей использовали в экспериментах по изучению действия нервно-паралитических газов, которые блокируют передачу нервных импульсов и таким образом могут приостанавливать работу сердца, легких и других жизненно важных органов. Сущность действия газов состоит в том, что они препятствуют расщеплению ацетилхолина после того, как он останавливает «натриевый насос» нервной клетки. Обычно в организме ацетилхолин расщепляется сразу же после того, как выполнит свою функцию; процесс расщепления управляется ферментом, который называется холинэстераза. Нервнопаралитические газы как раз и препятствуют действию этого фермента.
Электрические органы угря содержат большое количество холинэстеразы, которая отличается к тому же высокой активностью; потому-то военным специалистам и понадобились электрические угри, привезенные в зоопарк в Бронксе: они служили источником фермента, нужного для изучения нервно-паралитического действия отравляющих газов. Большинство работников зоопарка лишь после войны узнали, зачем в подвалах львиного вольера держали такое количество электрических угрей.
Рыбы составляют меньшую часть обитателей Мирового океана; гораздо большую часть его обитателей составляют беспозвоночные, и именно среди них имеются и самые миниатюрные и безобидные водные животные, и самые громадные и опасные.
Рыба, которая бьет током
О том, что ткани животных генерируют электричество, человечество узнало в 1791 году, когда Луиджи Гальвани, профессор анатомии в Болонском университете, обнаружил, что нервная и мышечная ткани ноги лягушки реагируют на электрический ток. Со временем ученые выяснили, что импульсы, рассылающие сигналы по нервной системе человека, имеют электрохимическую природу. Упрощая картину, можно сказать, что нервные сигналы — это движение ионов, то есть заряженных частиц сквозь оболочки нервных клеток. В состоянии покоя или бездействия клетки ее оболочка имеет отрицательный потенциал, так как изнутри клетки скапливаются отрицательно заряженные ионы; однако снаружи клетки находятся и положительные, и отрицательные ионы, и среди них — ионы натрия, несущие положительный заряд. Когда нервная клетка посылает сигнал, оболочка её меняет полярность, и ионы натрия проникают сквозь нее в клетку, меняя ее потенциал на положительный. Придя в обычное состояние, клетка избавляется от ионов натрия при помощи механизма, «устройство» которого неизвестно; ученые называют его «натриевым насосом», потому что он словно выкачивает из клетки ионы натрия.
Когда клетка передает сигнал, «насос» перестает действовать. Ионы натрия и калия притягиваются друг к другу, обмениваясь зарядами и нейтрализуя электрический потенциал клетки. Крошечные разряды поднимаются по нервному волокну, отходящему от клетки, возбуждая электрическое поле в окружающей ткани и жидкости. Сигнал, или нервный импульс, перемещается по нервному волокну до тех пор, пока не достигнет точки, где оно разветвляется на отростки, называемые нервными окончаниями. Окончания пронизывают пространство, отделяющее одну нервную клетку от другой. Это пространство между двумя соседними клетками нервной ткани называется синапсом.
B какой-то момент нервный импульс, направляющийся к мышце, достигает синапса, на противоположной стороне которого находится клетка мышечного волокна. Эта точка, называемая нервно-мышечным соединением играет решающую роль в генерировании электричества у рыб. При появлении нервного импульса в нервно-мышечном соединении вокруг нервных окончаний выделяется химическое вещество, называемое ацетилхолином. Просачиваясь от нервной клетки к мышечной, ацетилхолин передает импульс мышечному волокну, деполяризуя его и вызывая тем самым электрический разряд. Предполагается также, что еще одной функцией ацетилхолина является прекращение действия «натриевого насоса» в клетке, что позволяет ионам проникать сквозь оболочку клетки.
Обычно электрический сигнал заставляет мышцу сокращаться, что и проявляется в различных движениях тела животного. Однако некоторые мышцы у рыб потеряли способность сокращаться. Нервные окончания, идущие к этим мышцам, залегают в районе нервно-мышечных соединений очень густо, а волокна мышечных клеток настолько разрастаются, что образуют нечто вроде живого электрода.
Электрические органы таких рыб, как электрический угорь и электрические скаты, состоят из нескольких подобных «электродов». Когда все они разряжаются, возникает электрический ток большой мощности. Управляет разрядом пучок нервов, который у электрического угря отходит от спинного мозга, а у электрического ската — от головного.
Электрические скаты, обитающие и в умеренной, и в тропической зонах, способны создать на своих «электродах» напряжение до 50 вольт и выше; этого достаточно, чтобы убивать рыб и ракообразных, которыми питаются скаты. Электрический скат похож на гибкий блин с длинным и толстым хвостом. Охотясь, скат бросается на жертву всем телом и «обнимает» ее своими «крыльями», на концах которых находятся электрические органы. Объятие смыкается, «электроды» разряжаются — и скат убивает свою жертву разрядом тока.
В старину скатов использовали для лечения посредством шока. Лекари помещали небольших скатов на головы пациентов, страдающих головными болями и другими недугами; считалось, что скат обладает целебными свойствами.
Воды, в которых живет электрический угорь, бывают бедны кислородом, но угря это не смущает: он научился дышать также и атмосферным кислородом. Многочисленные кровеносные сосуды в его пасти способны усваивать кислород, и угорь захватывает воздух, поднимаясь к поверхности воды.
Молодой электрический угорь видит хорошо, но с возрастом его зрение резко ухудшается. Это не особенно смущает угря, ибо в темной, мутной воде, где он обычно обитает, от глаз все равно толку мало. Искать добычу угрю помогают все те же электрические органы: он испускает сравнительно слабые электрические импульсы, напряжение которых не превышает 40 — 50 вольт; эти низковольтные разряды помогают ему находить мелких морских обитателей, которыми угорь питается. Кроме того, электрические угри, вероятно, способны воспринимать электрические разряды друг друга — во всяком случае, когда один из них ударом электрического тока парализует жертву, к добыче устремляются и другие угри.
Электрические угри хорошо привыкают к жизни в неволе, и их часто можно видеть в аквариумах; обычно аквариум оборудуют каким-нибудь электрическим прибором для демонстрации уникальных способностей угря, например лампой, к которой ведут провода от двух опущенных в воду электродов. Когда в аквариум бросают кусочки корма или мелких рыбешек, лампа загорается, потому что, почуяв добычу, угорь начинает генерировать в воде электрические разряды. Аквариум можно оборудовать и звукоусилителями, и тогда посетители услышат статические шумы, сопровождающие разряды тока, генерируемые угрем.
Способность угря генерировать огромные количества электроэнергии уже более столетия привлекает внимание биологов и медиков. Во время второй мировой войны ею заинтересовались и военные, в том числе и американские: через два года после вступления Соединенных Штатов в войну, в Нью-Йорк были доставлены двести электрических угрей, пойманных в Южной Америке. В зоопарке в Бронксе для них устроили двадцать два деревянных бассейна. Угрей использовали в экспериментах по изучению действия нервно-паралитических газов, которые блокируют передачу нервных импульсов, и таким образом могут приостанавливать работу сердца, легких и других жизненно важных органов. Сущность действия газов состоит в том, что они препятствуют расщеплению ацетилхолина после того, как он останавливает «натриевый насос» нервной клетки. Обычно в организме ацетилхолин расщепляется сразу же после того, как выполнит свою функцию; процесс расщепления управляется ферментом, который называется холинэстераза. Нервно-паралитические газы как раз и препятствуют действию этого фермента.
Электрические органы угря содержат большое количество холинэстеразы, которая отличается к тому же высокой активностью; потому-то военным специалистам и понадобились электрические угри, привезенные в зоопарк в Бронксе: они служили источником фермента, нужного для изучения нервно-паралитического действия отравляющих газов. Большинство работников зоопарка лишь после войны узнали, зачем в подвалах львиного вольера держали такое количество электрических угрей.
Рыбы составляют меньшую часть обитателей Мирового океана; гораздо большую часть его обитателей составляют беспозвоночные, и именно среди них имеются и самые миниатюрные и безобидные водные животные, и самые громадные и опасные.
В приключенческих фильмах и романах, действие которых происходит в морях южного полушария, часто появляется гигантский моллюск Tridacna gigas, изображаемый этакой живой ловушкой, капканом, поджидающим неосторожного пловца. На самом деле этот гигант питается планктоном и вовсе не обладает той огромной силой, которую ему обычно приписывают, — даже если размеры его раковины действительно достигают 1,2 метра, а вес самого моллюска 220 килограммов. Нет ни одного документированного случая смерти человека от столкновения с Tridacna gigas, однако даже такие авторитетные источники, как издаваемый американским военно-морским флотом журнал «Наука о море», предупреждают читателя об опасности, которую представляет для аквалангиста этот моллюск. Однако маловероятно, что моллюск, случайно сомкнувший свои створки вокруг человеческой ноги, станет удерживать ее; скорее, он постарается отделаться от неудобной добычи.
Каких животных называют электрическими?
Электрические животные – это исключительно рыбы. У них есть способность создавать и использовать мощные электрические разряды для нападения и обороны, у других классов позвоночных такой способности нет. Этот уникальный дар позволяет их обладателям и ориентироваться в окружающем водном пространстве, и общаться с другими особями своего вида. Но не все электрические рыбы генерируют действительно мощные разряды. Это свойственно только некоторым из них, например, электрический угорь Electrophorus electricus является самым сильным электрогенератором среди рыб, создающий разряды напряжением до 600 вольт и больше.

Категории электрогенных рыб
Рыбы, способные создавать электрические импульсы иногда называются электрогенными. По способности к электрогенерации выделяют три главные категории рыб:
Сильноэлектрические и слабоэлектрические
К этой категории относится не очень много видов. Все они создают разряды, представляющие опасность для человека и крупных животных, находящихся в воде. Их можно встретить и в пресных водоёмах, и в морской воде. В заболоченных местах бассейна Амазонки в Южной Америке живёт электрический угорь, которого очень боятся аборигенные жители. Ведь именно он вырабатывает электрический ток наибольшей мощности (до 650 В). Водоёмы тропических и субтропических районов Африки являются местом обитания электрического сома, взрослые особи которого способны создавать отдельные импульсы до 250 вольт.
В море в прибрежных частях Атлантического океана вдоль побережий Африки и на север до юга Великобритании электрогенной рыбой является электрический скат. Он является источником электрических импульсов мощностью до 220-ти вольт, которые очень ощутимы для человека.
Все электрические рыбы из этой категории имеют большие электрические органы, вес которых составляет до одной трети от общей массы тела.
Электрические разряды слабоэлектрических рыб настолько слабые, что не могут навредить жертве. Поэтому они генерируются не для умерщвления или обездвиживания добычи, а только с целью её найти. Другой целью является обнаружение препятствий и других объектов в окружающем водном пространстве – для ориентирования. Электрические сигналы служат и способом общения для особей одного вида.
Пассивная и активная электролокация
Очень слабые электрические разряды исходят от всех морских организмов, что является результатом сокращения их мышц. Но улавливать эти разряды могут только рыбы, которых называют электрическими.
Есть две группы таких рыб:
1 — обладающие способностью только обнаружить электрические поля других живых существ в воде: это пассивная электролокация;
2 – умеющие улавливать электрические сигналы от других организмов и создавать собственные: активная электролокация;
Электролокационные хищники
Многим рыбам пассивная электролокация очень помогает во время охоты. Наиболее известны акулы и скаты. Например, акула-молот имеет на морде очень много электросенсорных зон, благодаря которым она чувствует электрические поля зарывшейся в песок добычи и сразу определяет её местонахождение. Никаких шансом спастись у потенциальной жертвы нет. Такие же свойства присущи и американской куньей акуле. По результатам научных экспериментов с синими акулами стало ясно, что эти хищницы атакуют предпочтительно добычу, имитация которой создавалась электрическими полями. Добыча, имитируемая в эксперименте запахами, атаковалась реже.
Преимущества такой электролокационной охоты очевидны: благодаря ей электрические рыбы выживают за счёт хорошо маскирующихся жертв, которых другим способом обнаружить нельзя. Например, акула-молот так находит свою еду в мягком грунте.
Активная электролокация
Принцип активной электролокации у рыб очень похож на эхолокацию, которой пользуются летучие мыши. Посылаемые в окружающее водное пространство электрические сигналы встречают на своём пути какие-либо объекты. Встреченный объект искажает электрическое поле, созданное рыбой, и она фиксирует это искажение, используя электрорецепторы на поверхности своей кожи. Так определяется местонахождение объекта и его габариты, и также электрические свойства. При помощи такой электролокации электрогенная рыба может получать очень разную информацию об окружающих объектах. Например, для слабоэлектрической рыбы-слона отмечена способность отличать живой материал от неживого. Эти рыбки живут в мутных слабо освещённых водоёмах, и электролокация является лучшим способом ориентироваться в таких условиях. Электрический орган, создающий необходимые для этого электрические импульсы небольшой мощности, располагается в области хвостового стебля.

С какими целями рыбы выпускают электрические сигналы?
Электрические импульсы генерируются рыбами для достижения разных целей, для каждой из которых создаются разные сигналы:
Для общения генерируются сигналы с определёнными характеристиками. Это происходит постоянно, и от электрической рыбы идёт поток информации: видовая принадлежность генерирующей его особи, её готовности или не готовность к размножению, какова степень агрессивности. Если в стае данного вида существует внутривидовая иерархия, то сигнал даёт понимание социального статуса особи, отправившей его.
Изучение «рыбьего языка» очень сложный процесс, хотя учёные достигли определённых результатов и получили много интересной информации.







