слух у рыбы характеристика и значение

Какой слух у рыб

слух у рыбы характеристика и значение. Смотреть фото слух у рыбы характеристика и значение. Смотреть картинку слух у рыбы характеристика и значение. Картинка про слух у рыбы характеристика и значение. Фото слух у рыбы характеристика и значение«Ты мне тут не шуми, а то всю рыбу распугаешь» — сколько раз мы слышали подобную фразу. И многие рыбаки-новички до сих пор наивно полагают, что такие слова говорятся исключительно из строгости, желания помолчать, суеверий. Думают они примерно так: рыба же плавает в воде, что она там может услышать? Оказывается, очень даже многое, не нужно на этот счет заблуждаться. Чтобы прояснить ситуацию, мы хотим рассказать, какой слух у рыб и почему их можно запросто спугнуть какими-то резкими или громкими звуками.

Глубоко заблуждаются те, кто думает, что карпы, лещи, сазаны и прочие обитатели акваторий практически глухи. У рыб отличный слух — и благодаря развитым органам (внутреннему уху и боковой линии), и за счет того, что вода хорошо проводит звуковые вибрации. Так что шуметь во время фидерной ловли действительно не стоит. Но вот насколько хорошо слышит рыба? Так же, как мы, лучше или хуже? Давайте рассмотрим этот вопрос.

Насколько хорошо слышит рыба

слух у рыбы характеристика и значение. Смотреть фото слух у рыбы характеристика и значение. Смотреть картинку слух у рыбы характеристика и значение. Картинка про слух у рыбы характеристика и значение. Фото слух у рыбы характеристика и значениеВ качестве примера возьмем всеми нами любимого карпа: он слышит звуки в диапазоне 5 Гц — 2 кГц. Это низкие вибрации. Для сравнения: мы, люди, в еще не старом возрасте слышим звуки в диапазоне 20 Гц — 20 кГц. Наш порог восприятия начинается с более высоких частот.

Так что в каком-то смысле рыбы слышат даже лучше нас, но до определенного предела. Например, они замечательно улавливают шорохи, удары, хлопки, поэтому важно не шуметь.

Рыб по слуху можно условно разделить на 2 группы:

отлично слышат — это осторожные карповые, линь, плотва

хорошо слышат — это более смелые окуни и щуки

Как видите, глухих нет. Так что хлопать дверцей автомобиля, включать музыку, громко переговариваться с соседями у места ловли категорически противопоказано. Этот и подобный ему шум может свести к нулю даже хороший клев.

Какие органы слуха есть у рыб

В задней части головы у рыбы расположена пара внутренних ушей, отвечающих за слух и чувство равновесия. Обратите внимание, выхода наружу у этих органов нет.

По корпусу рыбы, с обеих сторон, проходят боковые линии — своеобразные улавливатели движения воды и звуков низкой частоты. Подобные вибрации фиксируются жировыми сенсорами.

Как работают органы слуха у рыб

слух у рыбы характеристика и значение. Смотреть фото слух у рыбы характеристика и значение. Смотреть картинку слух у рыбы характеристика и значение. Картинка про слух у рыбы характеристика и значение. Фото слух у рыбы характеристика и значениеБоковыми линиями рыба определяет направление звука, внутренними ушами — частоту. После чего передает все эти внешние вибрации с помощью жировых сенсоров, расположенных под боковыми линиями, — по нейронам в мозг. Как видите, работа органов слуха организована до смешного просто.

При этом внутреннее ухо у не хищных рыб соединено со своего рода резонатором — с плавательным пузырем. Он первым принимает все внешние вибрации и усиливает их. И уже эти, повышенной мощности, звуки поступают ко внутреннему уху, а от него и к мозгу. За счет такого резонатора карповые и слышат вибрации частотой до 2 кГц.

А вот у хищных рыб внутренние уши не связаны с плавательным пузырем. Поэтому щуки, судаки, окуни слышат звуки примерно до 500 Гц. Впрочем, даже такой частоты им хватает, тем более что у них лучше развито зрение, чем у не хищных рыб.

В заключение хотим сказать, что к постоянно повторяющимся звукам обитатели акватории привыкают. Так что даже шум лодочного мотора, в принципе, может и не напугать рыбу, если по водоему часто плавают. Другое дело — незнакомые, новые звуки, тем более резкие, громкие, продолжительные. Из-за них рыба даже может перестать кормиться, даже если вы смогли подобрать хорошую прикормку, или нереститься, и как показывает практика, чем острее у нее слух, тем скорее и раньше это произойдет.

Вывод один и он прост: на рыбалке не шумите, о чем мы уже неоднократно писали в этой статье. Если не пренебрегать этим правилом и соблюдать тишину, шансы на хороший клев останутся максимальными.

Источник

Орган слуха рыб

Как и у всех позвоночных, орган слуха рыб является парным, но если учесть, что в боковой линии найдены элементы, относящиеся к слуху, то можно говорить о панорамном слуховом восприятии у рыб.

Анатомически орган слуха также является единым целым с органом равновесия. Не вызывает сомнения, что физиологически это два совершенно разных органа чувств, выполняющие различные функции, имеющие различное строение и работающие на основе различных физических явлений: электромагнитных колебаний и гравитации. В этой связи я буду говорить о них как о двух самостоятельных органах, которые, конечно же, связаны меж­ду собой, как и с другими рецепторами.

Органы слуха рыб и животных, обитающих на суше, существенно различаются. Плотная среда, в которой живут рыбы, в 4 раза быстрее и на более дальние расстояния проводит звук, нежели атмосфера. Рыбам не нужны ушные раковины и барабанные перепонки.

Орган слуха имеет особенно большое значение для рыб, живущих в мутной воде.

Специалисты утверждают, что слуховую функцию у рыб осуществляют помимо органа слуха как минимум еще и боковая линия, и плавательный пузырь, а также различные нервные окончания.

В клетках боковой линии обнаружены элементы, равнозначные органу слуха — механорецепторные органы боковой линии (невромасты), включающие в себя группу чувствительных волосковых клеток, подобных чувствительным клеткам органа слуха и вестибулярного аппарата. Этими образованиями регистрируются акустические и другие колебания воды.

Существуют различные мнения относительно восприятия рыбами звуков различного спектра частоты. Одни исследователи считают, что рыбы, как и люди, воспринимают звуки частотой от 16 до 16 000 Гц, по другим данным, верхний предел частот ограничивается 12 000–13 000 Гц. Звуки указанных частот воспринимаются основным органом слуха.

Предполагается, что боковой линией воспринимаются низкие звуковые волны частотой, по данным разных источников, от 5 до 600 Гц.

Есть утверждение и о том, что рыбы способны воспринимать весь диапазон звуковых колебаний — от инфра- до ультразвуковых. Установлено, что рыбы способны уловить в 10 раз меньшее изменение частот, нежели человек, в то время как «музыкальный» слух рыб в 10 раз хуже.

Плавательный пузырь рыб, как полагают, играет роль резонатора и преобразователя звуковых волн, увеличивая остроту слуха. Он выполняет также звукообразовательную функцию.
Парные органы боковой линии рыб стереофонически (точнее, панорамно) воспринимают звуковые колебания; это дает рыбам возможность четко устанавливать направление и место источника колебания.

Рыбы выделяют ближнюю и дальнюю зоны акустического поля. В ближней зоне они четко определяют местонахождение источника колебаний, но пока исследователям неясно, могут ли они устанавливать местонахождение источника в дальней зоне.

Рыбы обладают также удивительным «прибором», о котором человек может пока мечтать — анализатором сигналов. С его помощью они из всего хаоса окружающих звуков и колебательных проявлений способны выделять нужные и важные для их жизни сигналы, даже такие слабые, которые находятся на грани возникновения или затухания. Рыбы способны их усиливать и затем воспринимать анализирующими образованиями.

Достоверно установлено, что рыбы широко пользуются звуковой сигнализацией. Они способны не только воспринимать, но и издавать звуки в широком диапазоне частот.

В свете рассматриваемой проблемы хотел бы особо обратить внимание читателя на восприятие рыбами инфразвуковых колебаний, что имеет, по моему мнению, для рыболовов большое практическое значение.

Считается, что частоты 4–6 Гц действуют губительно на живые организмы: эти колебания входят в резонанс с колебаниями тела и отдельных органов.

Источниками колебаний этих частот могут быть совершенно различные явления: молнии, полярные сияния, извержения вулканов, обвалы, оползни, морской прибой, штормовые микросейсмы (колебания в земной коре, возбуждаемые морскими и океаническими штормами — «голос моря»), вихреобразования у гребней волн, близкие слабые землетрясения, качающиеся деревья, работа промышленных объектов, машин и т. п.

Не исключено, что рыбы реагируют на приближение ненастной погоды благодаря восприятию низкочастотных акустических колебаний, исходящих от зон повышенной конвекции и фронтальных разделов, находящихся вблизи центра циклона. Можно на этом основании предполагать, что рыбы обладают способностью «предсказывать», а вернее, чувствовать изменения погоды задолго до их наступления. Изменения эти они фиксируют по разнице силы звуков. О надвигающихся погодных изменениях рыбы, возможно, могут «судить» также и по уровню помех для прохождения отдельных диапазонов волн.

Необходимо упомянуть и о таком явлении, как эхолокация, хотя, по-моему, она не может осуществляться с помощью органа слуха рыб, для нее имеется самостоятельный орган. В том, что эхолокация у обитателей подводного мира обнаружена и довольно хорошо изучена, сегодня нет сомнения. У некоторых исследователей есть сомнение только в том, обладают ли эхолокацией рыбы.

А пока эхолокацию относят ко второму типу слуха. Сомневающиеся ученые считают, что если будут получены доказательства того, что рыбы способны воспринимать ультразвуковые колебания, то сомнений в способности их к эхолокации не будет. Но сейчас такие доказательства уже получены.

Исследователями была подтверждена мысль о том, что рыбы способны воспринимать весь диапазон колебаний, включая ультразвуковые. Таким образом, вопрос об эхолокации у рыб как бы решен. И можно говорить еще об одном органе чувств у рыб — о локационном органе.

Материал опубликован в сто сороковом номере партвока «На рыбалку»

Источник

Слух у рыбы характеристика и значение

Органы чувств. Зрение.

Орган зрения — глаз по своему устройству напоминает фотографический аппарат, причем хрусталик глаза подобен объективу, а сетчатка — пленке, на которой получается изображение. У наземных животных хрусталик имеет чечевицеобразную форму и способен изменять свою кривизну, поэтому животные могут приспосабливать зрение к расстоянию.

Хрусталик у рыб шарообразный и не может менять форму. Зрение их перестраивается на различные расстояния при приближении или удалении хрусталика от сетчатой оболочки.

Оптические свойства водной среды не позволяют рыбе видеть далеко. Практически пределом видимости у рыб в прозрачной воде считают расстояние 10—12 м, а ясно рыбы видят не далее 1,5 м.

Лучше видят дневные хищные рыбы, живущие в прозрачной воде (форель, хариус, жерех, щука). Некоторые рыбы видят в темноте (судак, лещ, сом, угорь, налим). У них в сетчатке глаза есть особые светочувствительные элементы, способные воспринимать слабые световые лучи.

Угол зрения рыб очень велик. Не поворачивая тела, большинство рыб способно видеть каждым глазом предметы в зоне около 150° по вертикали и до 170° по горизонтали (рис. 1).

слух у рыбы характеристика и значение. Смотреть фото слух у рыбы характеристика и значение. Смотреть картинку слух у рыбы характеристика и значение. Картинка про слух у рыбы характеристика и значение. Фото слух у рыбы характеристика и значение

Иначе видит рыба предметы, находящиеся над водой. В этом случае вступают в силу законы преломления световых лучей, и рыба может видеть без искажения лишь предметы, которые находятся прямо над головой— в зените.

Наклонно падающие световые лучи преломляются и сжимаются в угол 97°,6 (рис. 2).

слух у рыбы характеристика и значение. Смотреть фото слух у рыбы характеристика и значение. Смотреть картинку слух у рыбы характеристика и значение. Картинка про слух у рыбы характеристика и значение. Фото слух у рыбы характеристика и значение

Чем острее угол входа светового луча в воду и ниже предмет, тем более искаженным видит его рыба. При падении светового луча под углом 5—10°, особенно если водная поверхность неспокойна, рыба перестает видеть предмет.

Лучи, идущие от глаза рыбы вне конуса, изображенного на рис. 2, полностью отражаются от водной поверхности, поэтому она представляется рыбе зеркальной.

С другой стороны, преломление лучей позволяет рыбе видеть как бы скрытые предметы. Представим себе водоем с крутым обрывистым берегом (рис. 3).вне преломления лучей водной поверхностью может увидеть человека.

слух у рыбы характеристика и значение. Смотреть фото слух у рыбы характеристика и значение. Смотреть картинку слух у рыбы характеристика и значение. Картинка про слух у рыбы характеристика и значение. Фото слух у рыбы характеристика и значение

Рыбы различают цвета и даже оттенки.

Цветовое зрение у рыб подтверждается их способностью изменять окраску в зависимости от цвета грунта (мимикрия). Известно, что окунь, плотва, щука, которые держатся на светлом песчаном дне, имеют светлую окраску, а на черном торфяном дне — более темную.

Особенно ярко выражена мимикрия у различных камбал, способных с изумительной точностью приспосабливать свою окраску к цвету грунта. Если камбалу пустить в стеклянный аквариум, под дно которого подложить шахматную доску, то на спине у нее появятся клетки, подобные шахматным.

В природных условиях камбала, лежащая на галечном дне, настолько сливается с ним, что становится совершенно незаметной для человеческого глаза. В то же время ослепшие рыбы, в том числе и камбала, не меняют своего цвета и остаются темно-окрашенными. Отсюда ясно, что изменение рыбами окраски связано с их зрительным восприятием.

Опыты кормления рыб из разноцветных чашечек подтвердили, что рыбы отчетливо воспринимают все спектральные цвета и могут различать близкие оттенки. Новейшие опыты, основанные на спектрофотометрических методах, показали, что многие виды рыб воспринимают отдельные оттенки не хуже человека.

Методами пищевой дрессировки установлено, что рыбы воспринимают и форму предметов — отличают треугольник от квадрата, куб от пирамиды.

Известный интерес представляет отношение рыб к искусственному свету. Еще в дореволюционной литературе писали о том, что костер, разведенный на берегу реки, привлекает плотву, налимов, сомов и улучшает результаты ловли.

Последние исследования показали, что многие рыбы — килька, кефаль, сырть, сайра — направляются к источникам подводного освещения, поэтому в настоящее время электрический свет используют в промысловой ловле. В частности, этим способом успешно ловят кильку на Каспии, а сайру у Курильских островов.

Попытки применить электрический свет в спортивной ловле пока не дали положительных результатов. Проводились такие опыты зимой в местах скопления окуня и плотвы. Во льду прорубали лунку и ко дну водоема опускали электролампу с рефлектором.

Затем производили ловлю на мормышку с подсадкой мотыля в соседней лунке и в лунке, вырубленной в стороне от источника света. Оказалось, что количество поклевок вблизи лампы меньше, чём вдали от нее. Аналогичные опыты производились при ловле судака и налима ночью; они также не дали положительного эффекта.

Для спортивной ловли рыбы заманчиво использование приманок, покрытых светящимися составами. Установлено, что рыбы схватывают светящиеся приманки. Однако опыт ленинградских рыболовов не показал их преимуществ; обычные приманки рыбы во всех случаях берут охотнее.

Литература по данному вопросу также не убедительна. В ней описываются только случаи поимки рыб на светящиеся приманки, а сравнительных данных о ловле в тех же условиях на обычные приманки не приводится.

В итоге надо считать, что целесообразность использования света и светящихся приманок на ловле еще окончательно не выяснена и необходимо дальнейшее детальное изучение этого вопроса.

Особенности зрения рыб позволяют сделать некоторые выводы, полезные для рыболова. Можно с уверенностью сказать, что находящаяся у поверхности воды рыба не в состоянии видеть стоящего на берегу рыболова далее 8—10 м и сидящего или ловящего взабродку — далее 5—6 м; имеет значение при этом и прозрачность воды.

Практически можно считать, что если рыболов не видит рыбу в воде, когда смотрит на хорошо освещенную водную поверхность под углом, близким к 90°, то и рыба не видит рыболова.

Поэтому маскировка имеет смысл только при ловле на мелких местах или поверху в прозрачной воде и при забросе на небольшое расстояние. Наоборот, предметы снаряжения рыболова, близкие к рыбе (поводок, грузило, сачок, поплавок, лодка), должны сливаться с окружающим фоном.

Наличие слуха у рыб долгое время отрицалось. Такие факты, как подход рыб по звонку к месту кормежки, привлечение сомов ударами по воде особой деревянной колотушкой («клочение» сомов), реакция на свисток парохода, еще мало что доказывали. Возникновение реакции могло объясняться раздражением других органов чувств.

Новейшие опыты показали, что рыбы реагируют на звуковые раздражения, причем эти раздражения воспринимаются и слуховыми лабиринтами, имеющимися в голове рыб, и поверхностью кожи, и плавательным пузырем, играющим роль резонатора.

Какова чувствительность звуковых восприятий у рыб, точно не установлено, но доказано, что они улавливают звуки хуже человека, причем высокие тона рыбы слышат лучше, чем низкие.

Звуки, возникающие в водной среде, рыбы слышат на значительном расстоянии, а звуки, возникающие в воздушной среде, слышат плохо, так как звуковые волны отражаются от поверхности и плохо проникают в воду. Учитывая эти особенности, рыболов должен остерегаться шуметь в воде, но может не опасаться напугать рыбу, громко разговаривая.

Интересно использование звуков в спортивной ловле. Однако вопрос о том, какие звуки привлекают рыб, а какие отпугивают, не изучен. Пока звук используют лишь при ловле сомов, «клочением».

Орган боковой линии.

Орган боковой линии есть только у рыб и земноводных, постоянно живущих в воде. Боковая линия чаще всего представляет собой канал, который тянется вдоль туловища от головы до хвоста. В канале разветвляются нервные окончания, с большой чувствительностью воспринимающие даже самые незначительные водные колебания.

При помощи этого органа рыбы определяют направление и силу течения, ощущают токи воды, образующиеся при смывании подводных предметов, чувствуют движение соседа в стае, врагов или добычи, волнение на поверхности воды. Кроме того, рыба воспринимает и колебания, которые передаются воде извне — сотрясение почвы, удары по лодке, взрывную волну, вибрацию корпуса парохода и т. п.

Подробно изучена роль боковой линии в схватывании рыбой добычи. Многократно поставленные опыты показали, что ослепленная щука хорошо ориентируется и безошибочно схватывает движущуюся рыбку, не обращая внимания на неподвижную.

Слепая щука с разрушенной боковой линией теряет способность ориентации, натыкается на стенки бассейна и. будучи голодной, не обращает внимания на плавающую рыбку.

Учитывая это, рыболов должен вести себя осторожно и на берегу и в лодке. Сотрясение почвы под ногами, волна от неаккуратного движения в лодке могут насторожить и надолго распугать рыбу.

Не безразличен для успеха ловли характер движения в воде искусственных приманок, так как хищники при преследовании и схватывании добычи ощущают создаваемые ею водные колебания. Уловистее, безусловно, окажутся те приманки, которые наиболее полно воспроизводят признаки обычной добычи хищников.

Органы обоняния и вкуса.

Органы обоняния и вкуса у рыб разделены. Органом обоняния у костистых рыб служат парные ноздри, расположенные по обеим сторонам головы и ведущие в носовую полость, выстланную обонятельным эпителием.

В одно отверстие вода входит, а из другого выходит. Такое устройство органов обоняния позволяет рыбе ощущать запахи растворенных или взвешенных в воде веществ, причем на течении рыба может чувствовать запахи только по струе, несущей пахучее вещество, а в тиховодье — только при наличии токов воды.

Орган обоняния слабее всего развит у дневных хищных рыб (щука, жерех, окунь), сильнее — у ночных и сумеречных рыб (угорь, сом, карп, линь).

Вкусовые органы расположены в основном во рту и глоточной полости; у одних рыб вкусовые сосочки находятся в области губ и усов (сом, налим), а иногда расположены по всему телу (сазан). Как показывают опыты, рыбы способны различать сладкое, кислое, гор » кое и соленое. Так же, как и обоняние, чувство вкуса сильнее развито у ночных рыб.

В литературе имеются указания о целесообразности добавлять в прикормку и насадку различные пахучие вещества, будто бы привлекающие рыбу: мятное масло, камфару, анисовые, лавро-вишневые и валерьяновые капли, чеснок и даже керосин.

Неоднократное использование этих веществ в корме не показало сколько-нибудь заметного улучшения клева, а при большом количестве пахучих веществ, наоборот, рыба почти совсем переставала ловиться. Аналогичный результат дали опыты, поставленные над аквариумными рыбами, которые неохотно ели корм, смоченный анисовым маслом, валерьянкой и т. п.

Вместе с тем естественный запах свежей прикормки, особенно конопляного жмыха, конопляного и подсолнечного масла, ржаных сухарей, свежесваренной каши, без сомнения, привлекает рыбу и ускоряет ее подход к кормушке.

Значение тех или иных органов чувств при отыскании пищи различными рыбами показано в табл. 1.

Источник

Акваловер

Аквариумистика — аквариум новичкам, аквариум любителям, аквариум профессионалам

Органы слуха и равновесия. Разговоры рыб

слух у рыбы характеристика и значение. Смотреть фото слух у рыбы характеристика и значение. Смотреть картинку слух у рыбы характеристика и значение. Картинка про слух у рыбы характеристика и значение. Фото слух у рыбы характеристика и значениеСамое читаемое

У рыб совмещен орган слуха и равновесия.
Находится этот орган в задней части черепной коробки и представляет из себя лабиринт. Это так называемое внутренне ухо: внешних слуховых отверстий, ушной раковины и улитки у рыб нет.

Лабиринт достаточно сложно устроен: он помещается в хрящевой или костной камере под прикрытием ушных костей. Верхняя его часть — это овальный мешочек (ушко, utriculus), нижняя — круглый мешочек (sacculus). Боковое расширение нижней части круглого мешочка (lagena) — это зачаток улитки. От верхней части отходят три канала, каждый из которых на одном конце расширен в ампулу.
Овальный мешочек с полукруглыми каналами — это орган равновесия или вестибулярный аппарат.
Круглый мешочек дает отростки внутренних лимфатических (эндолимфатических) каналов, который у хрящевых рыб выходят наружу, а у остальных рыб заканчиваются у кожи головы.

Лабиринт заполнен эндолимфой, в которой находятся «слуховые» камешки, состоящие из углекислой извести (отолиты), по три с каждой стороны головы.
Лабиринт работает следующим образом: при движении рыбы, давление эндолимфы в полукруглых каналах, а также со стороны отолита меняется, и возникшее раздражение регистрируется нервными окончаниями. Если верхняя часть лабиринта повреждена, рыба не может удержать равновесие, начинает ложиться на бок, спину, брюхо.

Регистрируют рыбы и звуки, идущие из атмосферы. Большую роль в регистрации звуков играет плавательный пузырь, соединенный с лабиринтом и служащий резонатором.

Органы слуха очень важны в жизни рыб. Это и поиск полового партнера (в рыбоводных хозяйствах запрещено движение транспорта возле прудов в период нереста), стайной принадлежности, и информация о нахождении пищи, контроль территории, защита молоди. Глубоководные рыбы, у которых ослаблено или отсутствует зрение, ориентируются в пространстве, а также общаются с сородичами именно с помощью слуха, наряду с боковой линией и обонянием, особенно учитывая тот факт, что звукопроводимость на глубине очень высокая.
слух у рыбы характеристика и значение. Смотреть фото слух у рыбы характеристика и значение. Смотреть картинку слух у рыбы характеристика и значение. Картинка про слух у рыбы характеристика и значение. Фото слух у рыбы характеристика и значение

Источник

Слух у рыбы характеристика и значение

слух у рыбы характеристика и значение. Смотреть фото слух у рыбы характеристика и значение. Смотреть картинку слух у рыбы характеристика и значение. Картинка про слух у рыбы характеристика и значение. Фото слух у рыбы характеристика и значение

слух у рыбы характеристика и значение. Смотреть фото слух у рыбы характеристика и значение. Смотреть картинку слух у рыбы характеристика и значение. Картинка про слух у рыбы характеристика и значение. Фото слух у рыбы характеристика и значение

КАК РЫБЫ СЛЫШАТ

Как известно, долгое время рыб считали глухими.
После того как у нас и за рубежом по методу условных рефлексов ученые провели эксперименты (в частности, среди подопытных были караси, окуни, лини, ерши и другие пресноводные рыбы), было убедительно доказано, что рыбы слышат, были также определены границы органа слуха, его физиологические функции и физические параметры.
Слух наряду со зрением — важнейший из чувств дистанционного (не контактного) действия, с его помощью рыбы ориентируются в окружающей среде. Без знания свойств слуха рыб нельзя до конца понять, каким образок поддерживается связь особей в косяке, как относятся рыбы к орудиям лова, каковы взаимоотношения хищника и жертвы. Прогрессирующей бионике необходим багаж накопленных фактов по строению и работе органа слуха у рыб.
Наблюдательные и смекалистые рыбаки-любители уже давно извлекали пользу из способности некоторых рыб слышать шум. Так родился способ ловли сомов на «клок». В насадке употребляют и лягушку; стремясь освободиться, лягушка, подгребая лапками, создает шум, хорошо знакомый сому, который часто оказывается тут как тут.
Итак, рыбы слышат. Давайте посмотрим на их орган слуха. У рыб не найти того, что называют наружным отделом органа слуха или ушами. Почему?
В начале этой книги мы упоминали о физических свойствах воды как прозрачной для звука акустической среды. Как бы пригодилась обитателям морей и озер способность навострять уши, подобно лосю или рыси, чтобы уловить далекий шорох и своевременно засечь крадущегося врага. Да вот незадача — оказывается, иметь уши не экономно для движения. Разглядывали щуку? Все ее точеное тело приспособлено для стремительного разгона и броска — ничего лишнего, что затрудняло бы движение.
Нет у рыб и так называемого среднего уха, свойственного наземным животным. У наземных животных аппарат среднего уха выполняет роль миниатюрного и просто устроенного приемо-передаточного преобразователя звуковых колебаний, осуществляющего свою paботу посредством барабанной перепонки и слуховых косточек. Эти «детали», слагающие конструкцию среднего уха наземных животных, у рыб имеют другое назначение, другое строение, другое название. И не случайно. Наружное и среднее ухо с его барабанной перепонкой биологически не оправдано в условиях больших, быстро нарастающих с глубиной давлений плотной массы воды. Интересно отметить, что у водных млекопитающих — китообразных, предки которых покинули сушу и вернулись в воду, барабанная полость не имеет выхода наружу, так как наружный слуховой проход либо заращен, либо перекрыт ушной пробкой.
И все-таки у рыб есть орган слуха. Вот его схема (см. рисунок). Природа позаботилась о том, чтобы этот весьма хрупкий, тонко устроенный орган был достаточно защищен — этим она как бы подчеркнула его значимость. (И у нас с вами внутреннее ухо защищает особо толстая кость). Вот лабиринт 2. С ним связана слуховая способность рыб (полукружные каналы — анализаторы равновесия). Обратите внимание на отделы, обозначенные цифрами 1 и 3. Это лагена (lagena) и саккулюс (sacculus) — слуховые приемники, рецепторы, воспринимающие звуковые волны. Когда в одном из опытов у гольянов с выработанным пищевым рефлексом на звук удалили нижнюю часть лабиринта — саккулюс и лагену, — они перестали отвечать на сигналы.
Раздражение по слуховым нервам передается в слуховой центр, расположенный в головном мозгу, где и происходят не постигнутые пока процессы превращения поступившего сигнала в образы и формирование ответной реакции.
Имеется два основных типа слуховых органов рыб: органы без связи с плавательным пузырем и органы, составной частью которых является плавательный пузырь.

Схема расположения рецепторов слуха во внутреннем ухе рыбы:

А — схема органа слуха рыбы: 1 — лагена; 2 — лабиринт; 3 — саккулюс.
Б — место расположения слухового органа.

слух у рыбы характеристика и значение. Смотреть фото слух у рыбы характеристика и значение. Смотреть картинку слух у рыбы характеристика и значение. Картинка про слух у рыбы характеристика и значение. Фото слух у рыбы характеристика и значение

Плавательный пузырь соединяется с внутренним ухом с помощью веберова аппарата — четырех пар подвижно сочлененных косточек. И хотя среднего уха у рыб нет, у некоторых из них (карповых, сомовых, харацинид, электрических угрей) есть его заменитель — плавательный пузырь плюс веберов аппарат.
До сих пор вы знали, что плавательный пузырь — это гидростатический аппарат, регулирующий удельный вес тела (а также то, что пузырь — необходимейший компонент полноценной карасевой ухи). Но об этом органе не лишне знать нечто большее. А именно: плавательный пузырь действует как приемник и преобразователь звуков (аналогично барабанной перепонке у нас). Вибрация его стенок передается через веберов аппарат и воспринимается ухом рыбы как колебания определенной частоты и интенсивности. С точки зрения акустики плавательный пузырь по существу представляет собой то же самое, что воздушная камера, помещенная в воду; отсюда — важные акустические свойства плавательного пузыря. Ввиду различия физических особенностей воды и воздуха акустический приемник
типа тонкой резиновой груши или плавательного пузыря, наполненный воздухом и помещенный в воду, при соединении с диафрагмой микрофона резко повышает его чувствительность. Внутреннее ухо рыбы и есть тот «микрофон», который работает в совокупности с плавательным пузырем. На деле это означает, что хотя раздел воды и воздуха в сильной степени отражает звуки, все же рыбы чувствительны к голосам и шуму с поверхности.
Всем известный лещ очень чуток в нерестовый период и боится малейшего шума. В старину во время нереста леща даже запрещалось звонить в колокола.
Плавательный пузырь не только повышает чувствительность слуха, но и расширяет воспринимаемый частотный диапазон звуков. В зависимости от того, сколько раз повторяются звуковые колебания за 1 секунду, измеряется частота звука: 1 колебание в секунду — 1 герц. Тикание карманных часов слышно в полосе частот от 1500 до 3000 герц. Для ясной, разборчивой речи по телефону достаточен диапазон частот от 500 до 2000 герц. Так что с гольяном мы смогли бы поговорить по телефону, ибо эта рыба реагирует на звуки в диапазоне частот от 40 до 6000 герц. Но если бы к телефону «подошли» гуппи, они бы услышали лишь те звуки, которые лежат в полосе до 1200 герц. Гуппи лишены плавательного пузыря, и их слуховой аппарат не воспринимает более высокие частоты.
В конце прошлого века экспериментаторы подчас не учитывали способностей различных видов рыб воспринимать звуки в ограниченном частотном диапазоне и делали ошибочные выводы об отсутствии слуха у рыб.
С первого взгляда может показаться, что возможности слухового органа рыбы никак нельзя сравнивать с чрезвычайно чувствительным ухом человека, способным обнаружить звуки ничтожно малой интенсивности и различать звуки, частоты которых лежат в диапазоне от 20 до 20000 герц. Тем не менее рыбы прекрасно ориентируются в родной стихии, и ограниченная порой частотная избирательность оказывается целесообразной, ибо позволяет из потока шума выделять только те звуки, которые оказываются полезными для особи.
Если звук характеризуется какой-либо одной частотой — мы имеем чистый тон. Чистый беспримесный тон получают с помощью камертона или звукового генератора. Большинство окружающих нас звуков содержит смесь частот, комбинацию тонов и оттенков тонов.
Надежным признаком развитого острого слуха служит способность различать тона. Человеческое ухо способно различать около полумиллиона простых тонов, различных по высоте и громкости. А как у рыб?
Гольяны способны различать звуки разной частоты. Дрессированные на определенный тон, они могут запоминать этот тон и реагировать на него, спустя один — девять месяцев после дрессировки. Некоторые особи могут запоминать до пяти тонов, например «до», «ре», «ми», «фа», «соль», и если «пищевой» тон при дрессировке был «ре», то гольян способен отличить его от соседнего более низкого тона «до» и более высокого тона «ми». Более того, гольяны в интервале частот 400—800 герц способны различать звуки, отличные по высоте на половину тона. Достаточно сказать, что фортепьянная клавиатура, удовлетворяющая самому тонкому человеческому слуху, содержит 12 полутонов октавы (отношение частот, равное двум, в музыке называется октавой). Что ж, возможно гольяны также «не лишены» некоторой музыкальности.
По сравнению со «слухачом» гольяном макропод не музыкален. Однако и макропод различает два тона, если они отстоят один от другого на 1 1 /3 октавы. Можно упомянуть об угре, который замечателен не только тем, что идет нереститься за тридевять морей, но и тем, что способен различать звуки, отличные по частоте на октаву. Вышесказанное об остроте слуха рыб и их способности запоминать тона, заставляет по-новому перечитать строки известного австрийского аквалангиста Г. Хасса: «Не менее трехсот больших серебристых звездчатых ставрид подплыло сплошной массой и начало кружить вокруг громкоговорителя. Они держались от меня на расстоянии около трех метров и плыли словно в большом хороводе. Вполне вероятно, что звуки вальса — это были «Южные розы» Иоганна Штрауса — не имели ничего общего с этой сценой, и только любопытство, в лучшем случае звуки, привлекли животных. Но впечатление вальса рыб было столь полным, что я передал позже в нашем фильме так, как наблюдал сам».
Попытаемся теперь разобраться подробнее — что такое чувствительность слуха рыб?
Мы видим в отдалении двух беседующих людей, видим мимику каждого из них, жестикуляцию, но совершенно не слышим их голосов. Поток звуковой энергии, притекающий в ухо, настолько мал, что не вызывает слухового ощущения.
В данном случае чувствительность слуха можно оценивать наименьшей силой (громкостью) звука, которую ухо улавливает. Она отнюдь не одинакова по всему диапазону воспринимаемых данной особью частот.
Наивысшая чувствительность к звукам у человека наблюдается в полосе частот от 1000 до 4000 герц.
Ручьевой голавль в одном из экспериментов наименьший по силе звук воспринимал на частоте 280 герц. На частоте 2000 герц слуховая чувствительность его понижалась вдвое. Вообще рыбы лучше слышат низкие звуки.
Разумеется, слуховую чувствительность замеряют от какого-то начального уровня, принимаемого за порог чувствительности. Поскольку звуковая волна достаточной интенсивности производит вполне ощутимое давление, условились наименьшую пороговую силу (или громкость) звука определять в единицах давления, которое она оказывает. Такой единицей служит акустический бар. Нормальное человеческое ухо начинает улавливать звук, давление которого превышает 0,0002 бара. Чтобы понять, насколько это ничтожная величина, поясним, что звук карманных часов, прижатых к уху, оказывает на барабанную перепонку давление, превышающее пороговое в 1000 раз! В очень «тихой» комнате уровень звукового давления превышает пороговый в 10 раз. Это значит, что наше ухо фиксирует звуковой фон, который мы порой сознательно не в состоянии оценить. Для сравнения заметим, что барабанная перепонка испытывает боль, когда давление превышает 1000 бар. Такой силы звук мы чувствуем, стоя неподалеку от стартующего реактивного самолета.
Все эти цифры и примеры чувствительности человеческого слуха мы привели только для того, чтобы сопоставить их со слуховой чувствительностью рыб. Но не случайно говорят, что всякое сравнение хромает. Водная среда и особенности строения слухового органа рыб вносят заметные поправки в сравнительные измерения. Однако в условиях повышенного давления окружающей среды чувствительность человеческого слуха также заметно снижается. Как бы то ни было, но у карликового сомика чувствительность слуха ничуть не хуже человеческой. Это кажется поразительным, тем более что у рыб во внутреннем ухе нет кортиева органа — чувствительнейшего, тончайшего «прибора», который у человека и является собственно органом слуха.

Пороговая слуховая чувствительность сомика не уступает слуху человека.

слух у рыбы характеристика и значение. Смотреть фото слух у рыбы характеристика и значение. Смотреть картинку слух у рыбы характеристика и значение. Картинка про слух у рыбы характеристика и значение. Фото слух у рыбы характеристика и значение

Все это так: рыба слышит звук, рыба отличает один сигнал от другого по частоте и интенсивности. Но всегда следует помнить, что слуховые способности рыб не одинаковы не только между видами, но и среди особей одного вида. Если еще можно говорить о каком-то «усредненном» человеческом ухе, то по отношению к слуху рыб какой бы то ни было шаблон не применим, ибо особенности слуха рыб — результат жизни в конкретной обстановке. Может возникнуть вопрос: каким образом рыба отыскивает источник звука? Недостаточно слышать сигнал, надо сориентироваться на него. Жизненно важно для карася, до которого дошел грозный сигнал опасности — звук пищевого возбуждения щуки, локализовать этот звук.
Большинство изученных рыб способно локализовать звуки в пространстве на расстояниях от источников, приблизительно равных длине звуковой волны; на больших расстояниях рыбы обычно утрачивают способность определять направление к источнику звука и совершают рыскающие, поисковые движения, которые можно расшифровать как сигнал «внимание». Такая специфичность действия механизма локализации объясняется независимой работой двух приемников у рыб: уха и боковой линии. Ухо рыбы работает часто в комбинации с плавательным пузырем и воспринимает звуковые колебания в широком диапазоне частот. Боковая линия фиксирует давление и механические смещения частиц воды. Как ни малы сами по себе механические смещения частиц воды, вызванные давлением звука, они должны быть достаточными, чтобы их отметили живые «сейсмографы» — чувствительные клетки боковой линии. По-видимому, рыба получает информацию о расположении источника низкочастотного звука в пространстве сразу по двум показателям: величине смещения (боковая линия) и величине давления (ухо). Были проведены специальные опыты по выяснению способности речных окуней обнаруживать источники подводных звуков, излучаемых посредством магнитофона и гидроизолированных динамических наушников. В воду бассейна проигрывали записанные перед тем звуки питания — захват и перетирание пищи окунями. Такого рода опыты в аквариуме сильно усложняются тем, что многократное эхо от стенок бассейна как бы размазывает и заглушает основной звук. Похожий эффект наблюдается в обширном помещении с низким сводчатым потолком. Тем не менее окуни показали способность направленно, с расстояния до двух метров обнаруживать источник звука.
Метод пищевых условных рефлексов помог установить в условиях аквариума, что караси и карпы также способны определять направление к источнику звука. Некоторые морские рыбы (ставриды, рулены, барабули) в опытах в аквариуме и в море обнаруживали местоположение источника звука с расстояния 4—7 метров.
Но условия, в которых ставится опыт по выяснению той или иной акустической способности рыб, еще не дают представления о том, каким образом осуществляется звуковая сигнализация у рыб в естественной обстановке, где высок окружающий шумовой фон. Звуковой сигнал, несущий полезную информацию, только тогда имеет смысл, когда доходит до приемника в неискаженном виде, и это обстоятельство не требует особых пояснений.
У подопытных рыб, в том числе у плотвы и речного окуня, содержавшихся в аквариуме небольшими стайками, вырабатывали условный пищевой рефлекс. Как вы успели заметить, пищевой рефлекс фигурирует во многих опытах. Дело в том, что рефлекс на кормление быстро вырабатывается у рыб, и он наиболее устойчив. Аквариумисты это хорошо знают. Кто из них не проделывал простенький опыт: подкармливая рыб порцией мотыля, постукивать при этом по стеклу аквариума. После нескольких повторений, заслышав знакомый стук, рыбки дружно устремляются «к столу» — у них выработался рефлекс питания на условный сигнал.
В вышеуказанном опыте подавались два типа условных пищевых сигналов: однотонный звуковой сигнал частотой 500 герц, ритмически излучаемый через наушник посредством звукового генератора, и шумовой «букет», состоящий из предварительно записанных на магнитофон звуков, возникающих при питании особей. Для создания шумовой помехи в аквариум с высоты вливали струйку воды. В создаваемом ею фоновом шуме, как показали замеры, присутствовали все частоты звукового спектра. Нужно было выяснить, в состоянии ли рыбы выделить пищевой сигнал и среагировать на него в условиях маскировки.
Оказалось, что рыбы способны выделять полезные для них сигналы из шума. Причем однотонный звук, подаваемый ритмически, рыбы четко опознавали даже тогда, когда струйка падающей воды «забивала» его.
Звуки шумового характера (шорохи, чавканье, шелест, журчанье, шипенье и т. п.) рыбы выделяют (как и человек) лишь в случаях, когда они превышают уровень окружающих шумов.
Этот и другие аналогичные опыты доказывают способность слуха рыб выделить жизненно важные сигналы из набора бесполезных для особи данного вида звуков и шумов, в изобилии присутствующих в естественных условиях в любом водоеме, в котором есть жизнь.
На нескольких страницах мы рассмотрели возможности слуха рыб. Любители аквариума при наличии простых и доступных приборов, о которых мы поведем речь в соответствующей главе, могли бы самостоятельно поставить некоторые несложные опыты: например, определение способности рыб ориентироваться на источник звука, когда тот имеет для них биологическое значение, или способности рыб выделять такие звуки на фоне прочих «бесполезных» шумов, или обнаружение границы слуха у того или иного вида рыбы и т. д.
Многое еще не известно, многое нужно понять в устройстве и работе слухового аппарата рыб.
Хорошо изучены звуки, издаваемые тресковыми и сельдями, а слух их не исследован; у других рыб как раз наоборот. Полнее исследованы акустические возможности представителей семейства бычков. Так, один из них, черный бычок, воспринимает звуки, не превышающие частоту 800—900 герц. Все, что выходит за это частотный барьер, бычка «не касается». Его слуховые возможности позволяют воспринять хриплое, низкое ворчание, издаваемое соперником посредством плавательного пузыря; это ворчание в определенной ситуации можно расшифровать как сигнал угрозы. Но вот высокочастотные компоненты звуков, возникающие при питании бычков, ими не воспринимаются. И выходит, что какому-нибудь хитрому бычку, если он желает наедине полакомиться добычей, прямой расчет питаться на чуть более высоких тонах — соплеменники (они же конкуренты) его не услышат и не найдут. Это конечно шутка. Но в процессе эволюции вырабатывались самые неожиданные приспособления, порождавшиеся необходимостью жить в сообществе и зависеть хищнику от его жертвы, слабой особи от ее более сильного конкурента и т. д. И преимущества, даже небольшие, в способах получения информации (тоньше слух, обоняние, острее зрение и т. п.) оборачивались для вида благом.
В следующей главе мы покажем, что звуковые сигналы имеют в жизни рыбьего царства такое большое значение, о котором совсем недавно и не подозревали.

СОДЕРЖАНИЕ

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *