сколько жаберных дуг у костных рыб
Жаберные дуги
| Жаберные дуги | |
Жаберные дуги у рыбы (жаберная крышка удалена). | |
Схематическое изображение строения жаберных дуг (горизонтальный разрез): I—IV — жаберные дуги, |
1—4 — жаберные борозды (снаружи) и/или жаберные карманы (внутри),
a — лат. Tuberculum laterale
b — лат. Tuberculum impar
c — лат. Foramen cecum
d — лат. Ductus thyreoglossus
e — лат. Sinus cervicalis
производные I жаберной дуги — третья ветвь тройничного невра (V пары ЧМН);
производные II — лицевой нерв (VII пара ЧМН);
производные III — языкоглоточный нерв (IX пара ЧМН);
производные IV — верхняя гортанная ветвь блуждающего нерва (X пара ЧМН);
производные V — нижняя гортанная ветвь блуждающего нерва [1] [2]
Содержание
Анатомия
Эмбриология
По мере развития головного мозга у рыб образуется вокруг него защитная коробка [1] :
Земноводные
Пресмыкающиеся
Птицы
Млекопитающие
Человек разумный
Согласно эволюционной теории (в процессе онтогенеза находит отражение процесс филогенеза), череп человека в ходе эмбрионального развития последовательно проходит три стадии развития [1] :
Производные хрящей жаберных дуг [1] [2] :
I — из верхней части первой жаберной (или челюстной) дуги (лат. Procéssus maxilláris ) формируется верхняя челюсть, на вентральном (обращённом в сторону живота) хряще (лат. Procéssus mandibuláris ) формируется нижняя челюсть, сочленяющаяся с височной костью посредством височно-нижнечелюстного сустава. Остальные части хрящей первой жаберной дуги превращаются в слуховые косточки: молоточек и наковальню.
II — верхний отдел второй жаберной (подъязычной или гиоидной) дуги даёт начало третьей слуховой косточке — стремени. Таким образом, все три слуховые косточки не имеют отношения к костям лицевого черепа и размещаются в барабанной полости, входящей в состав среднего уха и развивающейся из первого жаберного кармана. Остальная часть подъязычной жаберной дуги идёт на построение фрагментов подъязычной кости: малых рогов и частично её тела, а также шиловидных отростков височной кости и шилоподъязычной связки (лат. Ligaméntum stylohyoídeum ).
III — третья жаберная дуга служит источником для оставшейся части тела подъязычной кости и образует её большие рога.
IV—V (VII) — оставшиеся жаберные дуги служат источником для щитовидного и остальных хрящей гортани и трахеи.
Кости черепа человека, развивающиеся из жаберных дуг [1] [2] :
Надкласс рыбы
Общими признаками всех рыб является наличие обтекаемой формы тела, жизнь в воде. Тело подразделяется на голову, туловище и хвост. Хорошо развиты органы чувств: зрения, обоняния, слуха, осязания, равновесия.
Ароморфозы рыб
Рыбы отличаются от предшествующих эволюционных форм новыми, прогрессивными чертами строения, которые повысили их уровень организации. Давайте их перечислим.
Образуются предшественники конечностей, плавники, парные придатки тела, обособленные от туловища и головы, приводимые в движение мускульной силой.
У рыб хорда редуцируется, на ее месте формируется позвоночник. У хрящевых рыб позвоночник в течение всей жизни имеет хрящевое строение, а у костных рыб позвоночник окостеневает: он представлен костной тканью.
Обратите особое внимание, что в скелете хрящевых ганоидов (осетровых рыб) хорда сохраняется на всю жизнь.
Костные рыбы
Для большинства костных рыб характерен костный скелет, наличие жаберных крышек, прикрывающих жабры. Жаберные лепестки расположены непосредственно на жаберных дугах, имеется плавательный пузырь. Оплодотворение наружное.
Большинство видов костных рыб (90%) относятся к костистым рыбам. Для большей части костистых рыб характерно непрямое развитие (с метаморфозом).
Форма тела обтекаемая, рыбообразная, за счет чего снижается трение о воду. Поверхность тела покрыта налегающими друг на друга (подобно черепице) чешуйками.
В коже находится множество желез, которые секретируют слизь, покрывающущю все тело рыбы, благодаря чему снижается трение о воду. Из-за слизи пойманную рыбу тяжело удержать в руках, она выскальзывает.
Позвоночник состоит из двух отделов: туловищного и хвостового. В центре каждого позвонка имеется отверстие. Прилегая друг к другу, отверстия позвонков вместе соединяются в единый спинномозговой канал, в котором лежит спинной мозг.
Скелет грудных плавников соединен с позвоночником костями плечевого пояса, в отличие от скелета брюшных плавников, который не сочленяется с позвоночником. Имеются жаберные крышки, снаружи прикрывающие жаберные щели (у хрящевых рыб жаберные крышки отсутствовали, 5 жаберных щелей открывались каждая в отдельности наружу.)
Полость тела вторичная (целом).
Мышечная система сегментируется, что выражается в возникновении отдельных (дифференцированных) мышечных пучков. Наиболее ярким примером дифференцировки являются мышцы ротового аппарата и парных плавников.
Состоит из ротовой полости, глотки, продолжающейся в пищевод, желудка, толстого и тонкого кишечника. У многих рыб в ротовой полости имеются язык и острые зубы, расположенные на челюстях. Зубы предназначены не для механического измельчения пищи, а в основном для схватывания и удержания добычи. Слюнные железы отсутствуют, имеются вкусовые рецепторы.
Глотка тесно связано не только с пищеварительной, но и с дыхательной системой: здесь располагается жаберный аппарат рыб. С помощью жабр они приспособились забирать из воды растворенный в ней кислород и насыщать им кровь, откуда кислород поступает ко внутренним органам и тканям.
Процесс дыхания осуществляется благодаря тому, что вода через ротовое отверстие попадает в глотку. Вследствие движений жаберной крышки вода из ротоглоточной полости втягивается в боковую жаберную полость, омывая жабры. В результате газообмена в кровь рыбы поступает кислород, а углекислый газ покидает ее и растворяется в воде.
Как и хрящевые, костные рыбы имеют один круг кровообращения. Сердце двухкамерное, состоит из одного предсердия и одного желудочка. Запомните, что в сердце у рыб кровь венозная. Она накачивается сердцем в жабры, где происходит ее насыщение кислородом, после чего кровь становится артериальной.
Артериальная кровь направляется к внутренним органам и тканям, движется кровь внутри сосудов: кровеносная система замкнутого типа.
У всех хордовых нервная система трубчатого типа. Головной мозг состоит из продолговатого, среднего мозга, мозжечка, промежуточного и переднего мозга.
Развитие одних и тех же отделов у разных классов хордовых неодинаково, что мы с вами отчетливо увидим по мере изучения данного раздела. Я рекомендую вам обратить на данную тему особое внимание.
Также хорошо выражен (развит) мозжечок, который отвечает за координацию движений и ориентацию тела в пространстве. Это связано со сложными перемещениями рыбы, которая «парит как птица» только не в воздушной, а в водной среде. От головного мозга берут начало 10 пар черепно-мозговых нервов.
Органы зрения приспособлены к водной среде: хрусталик имеет шарообразную форму. Роговица плоская, аккомодация (настройка глаза на наилучшее видение объекта) происходит только благодаря перемещению хрусталика.
Рыбы хорошо видят лишь на близком расстоянии. Имеются органы вкуса на коже и нижней челюсти, а также органы обоняния, открывающиеся в ротовую полость.
Развитие у большинства рыб (костистые рыбы) непрямое, с метаморфозом. Запомните, что процесс выметывания икры и ее последующего оплодотворения называется нерест, он носит сезонный характер. У пресноводных рыб нерест происходит весной, в это время строго запрещена ловля рыбы.
Плавательный пузырь
Этот орган характерен исключительно для костных рыб: у хрящевых рыб (акулы, скаты) он отсутствует. Плавательный пузырь представляет собой воздушный мешок, заполненный смесью газов: азотом, кислородом, углекислым газом.
При заполнении газом пузырь расширяется: это меняет удельный вес рыбы, он понижается и рыба всплывает. Обратная схема происходит при уменьшении пузыря. Но откуда появляется газ, которым наполняется пузырь, если рыба обитает в воде? Отвечая на этот вопрос, отметим, что все рыбы делятся на два типа: открытопузырные и закрытопузырные.
У открытопузырных рыб плавательный пузырь сообщается с пищеварительной системой. Они в течение всей жизни поднимаются к поверхности воды и заглатывают воздух, по мере необходимости они могут освобождаться от газов, выдавливая их через глотку, а затем рот в окружающую среду. К таким рыбам относятся сельдеобразные, щукообразные, карпообразные, двоякодышащие.
Закрытопузырные рыбы имеют пузырь, не сообщающийся с пищеварительной трубкой. Газы в него поступают благодаря газовой секреции: они переходят из растворенного (в крови) состояния в газообразное, заполняя пузырь. Когда пузырь уменьшается газы вновь растворяются в крови, возвращаясь в кровеносное русло. К таким рыбам относятся: трескообразные, окунеобразные, кефалеобразные.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Сколько жаберных дуг у костных рыб
У костных рыб в стенках глотки (участка передней кишки, отделяющего ротовую полость от пищевода) имеются жаберные щели. Через них внутренняя среда организма рыбы сообщается с внешней средой, т. е. с водой. Между жаберными щелями располагаются костные образования, так называемые жаберные дуги. У костных рыб имеется четыре пары жаберных дуг, разделяющие пять пар жаберных щелей. Каждая жабра состоит из двух рядов жаберных лепестков, расположенных в виде буквы V. Лепестки несут жаберные пластинки, пронизанные многочисленными капиллярами. Жаберные пластинки значительно увеличивают площадь дыхательной поверхности. Толщина барьера, отделяющего кровь от воды, не более нескольких клеток; поэтому диффузия газов через этот барьер идет очень быстро.
Подвижная жаберная крышка, укрепленная тонкими костными слоями, прикрывает и защищает жабры. Пространство, отделяющее жабры от внутренней поверхности жаберной крышки, носит название жаберной полости. Жаберная крышка играет также определенную роль в функционировании вентиляционного механизма. Она может закрываться, плотно прижимаясь к телу рыбы, или открываться, регулируя таким образом ток воды — ее поступление внутрь через жаберную полость и выход наружу.
При вдохе ротовая полость расширяется и давление в ней падает, вследствие чего через ротовое отверстие внутрь устремляется вода. Одновременно под напором воды извне закрывается задний конец жаберной крышки, препятствуя поступлению воды с этой стороны. В то же время, однако, сокращаются мышцы жаберной крышки и жаберная полость расширяется. Давление в жаберной полости ниже, чем в ротовой, и поэтому вода поступает из ротовой полости в жаберную, проходя при этом над жабрами. Следовательно, газообмен может продолжаться и тогда, когда рыба набирает в рот новые порции воды.
При выдохе ротовое отверстие и входное отверстие пищевода закрываются, а дно ротовой полости поднимается. В результате вода выталкивается через жаберные щели в жаберную полость и, пройдя над жабрами, выходит затем наружу около заднего края жаберной крышки, открытой теперь под напором воды. Благодаря согласованной активности ротовой полости и мышц жаберной крышки жабры почти все время омываются потоком воды, так что в воде у их поверхности поддерживается высокая концентрация кислорода и низкая концентрация С02.
Лепестки соседних жабр перекрываются своими концами. Это создает сопротивление току воды, замедляя ее прохождение над жаберными пластинками и тем самым увеличивая время, на протяжении которого может происходить газообмен. Кровь в жаберных пластинках течет в направлении, противоположном току воды. Такая противоточная система более эффективна, нежели система с параллельными потоками, в которой обе жидкости движутся в одном направлении. В противоточной системе кровь на своем пути все время встречается с водой, в которой концентрация растворенного кислорода относительно высока, и градиент концентрации между кровью и водой поддерживается по всей длине жаберного лепестка и в каждой жаберной пластинке. Благодаря этому костные рыбы могут извлекать до 80% растворенного в воде кислорода.
Как возникли жаберные щели?
Владимир Малахов, Ольга Ежова
«Природа» №10, 2016
Об авторах
Владимир Васильевич Малахов — член-корреспондент РАН, заведующий кафедрой зоологии беспозвоночных биологического факультета МГУ им. М. В. Ломоносова, руководитель лаборатории биологии морских беспозвоночных Дальневосточного федерального университета (Владивосток). Область научных интересов — сравнительная анатомия, эмбриология и филогения беспозвоночных.
Ольга Владимировна Ежова — кандидат биологических наук, доцент той же кафедры, сотрудник той же лаборатории. Специалист в области морфологии и тонкой организации кишечнодышащих, морских звезд, офиур и голотурий; занимается изучением эволюции амбулакралий, морфологии, микроскопической анатомии и ультраструктуры полухордовых, иглокожих и хордовых.
Все хорошо представляют, как выглядят у костных рыб (например, у щуки или окуня) жабры — они скрыты костяными крышками. У хрящевых рыб (акул и скатов) жаберные щели видны снаружи, они напрямую соединяют передний отдел кишечника с внешней средой (рис. 1, а, б). У более примитивных бесчелюстных позвоночных (например, у миног) это жаберные мешки — метамерные выросты кишечника, открывающиеся во внешнюю среду серией округлых отверстий по бокам тела (рис. 1, в).
Рис. 1. Жаберные щели у хрящевых рыб (китовой акулы — а и манты — б), у современного представителя бесчелюстных — речной миноги (в; справа — схема фронтального среза миноги, на котором видны энтодермальные жаберные мешки) и жабры у низших хордовых: ланцетника (г), асцидии (д), бочоночника (е). Фото с сайтов: funniestmemes.com, discoverymaldives.com, tumblr.com, faculty.baruch.cuny.edu
Жаберные щели есть не только у позвоночных, но и у других подтипов типа хордовых. У ланцетников (небольших донных животных, похожих на маленьких рыбок, которые входят в подтип бесчерепных) жаберные щели представляют собой серию из более чем сотни метамерных отверстий, проникающих в кишечную трубку в передней половине тела (рис. 1, г). Есть жаберные щели и у еще одного подтипа хордовых животных — оболочников, которые так называются потому, что их тело заключено в оболочку из особого материала туницина, похожего на целлюлозу. Среди оболочников есть сидячие организмы — асцидии (рис. 1, д), а также плавающие в толще воды животные — бочоночники, сальпы, огнетелки и аппендикулярии (рис. 1, е). Все ископаемые хордовые тоже имели жаберные щели (рис. 2).
Рис. 2. Ископаемые хордовые с жаберными щелями: а — Didazoon haoae (ранний кембрий), б — Haikouichthys ercaicunensis (ранний кембрий), в — Metaspriggina walcotti (средний кембрий), г — Astraspis desiderata (поздний ордовик), д — конодонты (ордовик-девон), е — Jamoytius (ордовик-силур). Фото с сайтов: spinops.blogspot.ru, anthropology-news.org, tumblr.com, dinopedia.wikia.com, pvsm.ru
У хордовых животных жаберные щели служат не только для дыхания, но и для фильтрации, что позволяет извлекать из воды мелкие пищевые объекты. Так питаются не только оболочники и ланцетники, но и многие рыбы, в том числе и самая крупная из них — китовая акула (см. рис. 1, а).
Эволюция жаберных щелей представляет собой одну из самых увлекательных глав сравнительной анатомии позвоночных животных. По мнению К. Гегенбауэра, А. Н. Северцова, И. И. Шмальгаузена и других выдающихся сравнительных анатомов XIX–XX вв., с жаберными щелями связано развитие важнейших структур в челюстном аппарате, органах чувств и кровеносной системе. Но несмотря на это, до сих пор в зоологии не существует внятной гипотезы, объясняющей, как возникли столь таинственные, своеобразные органы — метамерные жаберные щели, напрямую соединяющие полость энтодермального кишечника с внешней средой.
Эволюция жаберных щелей у позвоночных
Рис. 3. Эволюция жаберных дуг у позвоночных животных: желтым показаны губные хрящи, красным — челюстная дуга, фиолетовым — подчелюстная дуга и ее производные, голубым — жаберные дуги задних жаберных щелей и подчелюстной аппарат ( [1; 2], с изм.)
У позвоночных жаберные щели имеют хрящевой или костный скелет — жаберные дуги (рис. 3). Одна из передних дуг у большинства позвоночных изменила свою функцию — превратилась в челюсти, благодаря которым все современные челюстноротые позвоночные (кроме миног и миксин) имеют возможность хватать, откусывать и пережевывать добычу. За челюстной жаберной дугой следует так называемая подчелюстная дуга. Между двумя этими дугами у хрящевых рыб (например, акулы) даже сохраняются рудиментарные жаберные щели — брызгальца. У большинства рыб подчелюстная дуга обеспечивает подвижную связь челюстей с черепной коробкой. Челюсти как бы подвешены снизу к черепной коробке с помощью парных «подвесок» (по-латыни эти хрящи или косточки называются hyomandibulare).
У позвоночных жаберные щели и кровеносные дуги связаны между собой (рис. 4), ведь жабры — основной орган газообмена: к ним притекает бедная кислородом кровь, в них она обогащается кислородом и далее несет его ко всем органам животного.

Рис. 4. Эволюция жаберных кровеносных дуг у водных и наземных позвоночных ( [2], с изм.)
У наземных позвоночных во взрослом состоянии жаберных щелей нет, но элементы жаберного скелета, естественно, сохраняются. У таких животных (амфибий) верхняя челюсть прирастает к черепной коробке. «Подвески» освобождаются от функции прикрепления челюстей к черепу и приобретают новую функцию: они превращаются в слуховые косточки — стремечко, а полость брызгальца становится полостью среднего уха. Скелет последующих жаберных щелей превращается в подъязычный аппарат, щитовидные хрящи, хрящи гортани и трахеи. Жаберные кровеносные дуги водных позвоночных преобразуются у наземных в главные сосуды кровеносной системы — сонные артерии, дуги аорты и легочные артерии (рис. 4).
Даже в развитии человеческого зародыша закладываются жаберные щели. Хрящевые зачатки жаберных дуг дают важнейшие элементы скелета человека — челюсти, слуховые косточки, шиловидный отросток височной кости и хрящи гортани. Любой дефект в развитии жаберных щелей приводит к необратимым нарушениям и гибели зародыша человека (рис. 5). Так что можно сказать, что без них и человек не был бы человеком.
Рис. 5. Преобразование жаберных дуг зародыша человека; цифрами обозначены номера жаберных дуг ( [3], с изм.)
Все изложенное показывает, как много элементов строения тела высших позвоночных, включая человека, происходит от жаберных щелей. Между тем само их происхождение остается неразгаданной тайной эволюционной морфологии животных. В самом деле, как можно представить себе происхождение многочисленных дырок, связывающих кишку с внешней средой? По какой причине могли возникнуть такие дырки? Какие органы могли дать начало жаберным щелям? Какова их первичная функция? На эти вопросы не только нет ответа, но они, по существу, даже не ставятся — по-видимому, мы слишком привыкли к тому, что жаберные щели существуют как характерный признак типа хордовых, и нечего об этом спрашивать. Чтобы попытаться ответить на вопрос о происхождении жаберных щелей, придется выйти за пределы типа хордовых.
Жаберные щели вторичноротых животных
Рис. 6. Ископаемое иглокожее Cothurnocystis elizae (Calcichordata) [6]. Стрелками показаны метамерные жаберные щели
Хордовые входят в состав вторичноротых животных — одной из главных филогенетических ветвей билатерально симметричных животных, которая очень рано обособилась от общего корня билатерий [4]. Два других типа в составе вторичноротых — полухордовые и иглокожие. Согласно современным представлениям, основанным на данных молекулярной филогенетики, иглокожие и полухордовые — это родственные типы, образующие кладу Ambulacralia. Заметим, что впервые на филогенетическую близость иглокожих и полухордовых указал выдающийся российский биолог И. И. Мечников [5], который и ввел в научный обиход название Ambulacralia.
Иглокожие широко распространены в морях и океанах планеты. Это морские звезды, морские ежи, офиуры-змеехвостки, голотурии и морские лилии. Ни у кого из современных иглокожих жаберных щелей нет. Однако, у этих животных есть известковый скелет, был он и у их предков, поэтому палеонтологическая история иглокожих хорошо известна. Оказывается, самые древние кембрийские иглокожие, выделяемые в подтип Calcichordata, или Carpozoa, обладали серией отверстий [6], которые рассматриваются как гомологи жаберных щелей позвоночных (рис. 6).

Рис. 7. Строение кишечнодышащих (слева) и крыложаберных животных
Полухордовые — тоже морские животные. В состав этого типа входят две группы, очень непохожие друг на друга, — кишечнодышащие и крыложаберные. Кишечнодышащие — довольно крупные морские черви, обитающие в толще грунта. На пляжах Бразилии в приливно-отливной полосе обитает Balanoglossus gigas, который достигает в длину 2 м. Исследования последних лет показали, что на больших глубинах (более 2 км) Мирового океана скрывается богатая и разнообразная фауна кишечнодышащих [7, 8]. Тело взрослых особей подразделяется на три отдела: мускулистый хобот, воротник, где располагается рот, и длинное туловище, в передней части которого открываются многочисленные (до 200 пар) метамерные жаберные щели (рис. 7). Крыложаберные — это мелкие колониальные организмы. На воротниковом отделе они несут щупальца, с помощью которых собирают пищу — мелкую органическую взвесь. Крыложаберные тоже имеют жаберные щели, но их немного — одна или две пары (см. рис. 7).

Рис. 8. Три типа вторичноротых животных. В каждом типе есть представители с многочисленными жаберными щелями
Таким образом, жаберные щели есть у животных всех трех типов, входящих в состав вторичноротых (рис. 8). Это означает, что, скорее всего, жаберные щели были унаследованы от общего предка вторичноротых животных. Биологи называют такие унаследованные от общего предка признаки синапоморфиями. Мы можем с полным основанием утверждать, что жаберные щели — это важнейшая синапоморфия вторичноротых животных.
Происхождение жаберных щелей
Чтобы попытаться понять происхождение жаберных щелей, надо разобраться в том, как они устроены у низших вторичноротых животных, а именно у полухордовых. Рассмотрим организацию жаберного аппарата на примере типичных кишечнодышащих. В передней части туловищного отдела кишечник с двух сторон пронизан жаберными щелями, которые имеют подковообразную форму. Они открываются не прямо во внешнюю среду, а в жаберные мешки, которые представляют собой выросты кишечника. А уже жаберные мешки соединяются с внешней средой метамерными порами, располагающимися по бокам туловища (рис. 9).
Рис. 9. Устройство жаберного аппарата кишечнодышащих (по [9], с изм.). Второй жаберный мешок частично вскрыт, и видна жаберная щель кишечника
Первая пара жаберных мешков имеет особое строение. В них открывается первая пара жаберных щелей, и одновременно в них же открываются выделительные органы (нефридии), выводящие продукты обмена из воротникового отдела. Таким образом, первая пара жаберных мешков выполняет двойную функцию — дыхательную и выделительную. Такое слияние нефридиев и первых жаберных щелей у кишечнодышащих позволило нам предложить гипотезу происхождения метамерных жаберных щелей от метамерных выделительных органов, первоначально располагавшихся в каждом сегменте тела предков вторичноротых [10].
Современные данные по филогении животного царства позволяют предположить, что общий предок билатерально симметричных животных был сложно устроенным метамерным организмом [4]. Вторичная полость тела такого организма была метамерна, т. е. разделена на сегменты перегородками — диссепиментами. В каждом сегменте имелась пара боковых выростов кишечника (дивертикулов) и пара выделительных органов — целомодуктов. Воронки целомодуктов всегда располагаются на диссепименте, а каналы и выделительные поры находятся в соседнем сегменте. Такой предок дал начало и первичноротым животным (кольчатым червям, моллюскам, членистоногим и др.), и вторичноротым (рис. 10, а).
Рис. 10. Гипотеза происхождения жаберных щелей в результате слияния метамерных выделительных органов с метамерными карманами кишечника. Пояснения в тексте
Согласно нашей гипотезе, у предков вторичноротых каналы выделительных органов соединились с кишечными карманами (рис. 10, б). В результате в каждом сегменте сформировалась пара сложных органов, в состав которых вошли карманы кишечника и выделительные органы. Каждый такой орган имел три отверстия: воронку выделительного органа, щель, ведущую в кишечник, и отверстие во внешнюю среду (рис. 10, б). Такое соединение оказывается выгодным для животных, ведущих роющий образ жизни (как современные кишечнодышащие) или обитающих в трубках (как современные крыложаберные). Когда животное закапывается в толщу осадка, продукты обмена выводятся через кишечник, а когда высовывается из грунта — через наружные отверстия в воду.
Заметим, что у большинства роющих животных происходит редукция перегородок между сегментами. Причины этого кроются в том, что роющие червеобразные беспозвоночные, как правило, используют для передвижения в толще грунта гидравлический способ локомоции, при этом полостная жидкость перекачивается вдоль оси животного. Перегородки между сегментами препятствуют этому и потому редуцируются, нередко вместе с поддерживаемыми ими нефридиями.
У современных кишечнодышащих только первая пара жаберных щелей соответствует по своей организации тому сложному органу, который имелся у предков вторичноротых во всех сегментах (рис. 9, 10, в). Здесь имеется все, что нужно: воронки выделительных органов, открывающиеся в предыдущий сегмент (воротниковый отдел), дивертикул кишечника (первый жаберный мешок) и отверстие во внешнюю среду. Кишечные дивертикулы последующих сегментов утратили воронки выделительных органов, сохранив только два отверстия — в кишечник и во внешнюю среду (рис. 10, в).
Появление отверстий, которые соединяют дивертикулы кишечника с внешней средой, позволило гипотетическим сложным органам осуществлять две функции — и выделительную, и дыхательную. Это вполне очевидно для первой пары жаберных мешков современных кишечнодышащих. Однако, как оказалось, у этих животных стенки других жаберных мешков тоже сохраняют выделительную функцию. Со стороны целома они окружены специализированными выделительными клетками — подоцитами, которые обеспечивают ультрафильтрацию из целома в полость жаберных мешков [11].
Наша гипотеза позволяет проследить связь специфических органов вторичноротых животных — жаберных щелей — с метамерными органами, имеющимися у других билатерально симметричных животных, а именно с метамерными целомодуктами и метамерными дивертикулами кишечника. Гипотеза объясняет энтодермальную природу жаберных мешков и у полухордовых, и у низших хордовых вплоть до современных бесчелюстных — миног. Вряд ли можно считать случайным и то, что жаберные мешки и жаберные щели сохраняют выделительную функцию — и не только у полухордовых, но и у позвоночных животных. Хорошо известно, что жаберные мешки миног и жабры рыб выполняют не только дыхательную, но и экскреторную функцию [12].
В заключение мы считаем нужным отметить, что предлагаемая гипотеза, как бы авторам этого ни хотелось, не является абсолютно новой. Очень близкие взгляды высказывал еще в 1875 г. выдающийся немецкий биолог, основатель всемирно известной Неаполитанской зоологической станции, Антон Дорн. Он предполагал, что у метамерного предка хордовых животных произошло слияние метамерных нефридиев и метамерных выростов кишечника, которые соединились с внешней средой и дали начало жаберным щелям: «Если мы теперь представим себе, что в различных точках внутренние отверстия сегментальных органов сольются со стенкой кишечника, то установится постулированная нами связь кишечника с внешней средой, помимо ротового и заднепроходного отверстия. Мы уже предположили выше, что между сегментальными органами и кишкой установилась связь, — возможно, что связь эта была вызвана или по крайней мере поддержана образованием выростов кишечника» [13]. Современники не обратили внимания на интересную гипотезу Дорна, вероятно, потому, что ее автор высказал эту идею, так сказать, походя, при обсуждении других вопросов, и не снабдил ее иллюстрациями. Гипотеза Дорна была полностью забыта почти на полтора столетия. Но «время — честный человек», как сказал Пьер Огюстен Бомарше в своей бессмертной «Женитьбе Фигаро», и время, как мы видим, подарило гипотезе Дорна вторую жизнь в XXI в.
Работа выполнена при поддержке Российского научного фонда. Проект 14-50-00034.



































